-/
NASA Contractor Report 4753

K

Aeroelastic Calculations Using CFD for a
Typical Business Jet Model

Michael D. Gibbons

Contract NAS1-19000
Prepared for Langley Research Center

_____________________________________________________________________________
September 1996






NASA Contractor Report 4753

Aeroelastic Calculations Using CFD for a
Typical Business Jet Model

Michael D. Gibbons
Lockheed Martin Engineering & Sciences Company « Hampton, Virginia

National Aeronautics and Space Administration Prepared for Langley Research Center
Langley Research Center ® Hampton, Virginia 23681-0001 under Contract NAS1-19000

September 1996



Printed copies available from the following:

NASA Center for AeroSpace Information National Technical Inforrnation Service (NTIS)
800 Elkridge Landing Road 5285 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171

(301) 621-0390 (703) 487-4650



Aeroelastic Calculations Using CFD for a Typical Business
Jet Model






In Memoriam

Michael D. Gibbons
(1960 — 1994)

This report is being published posthumously and is dedicated to the author,
Michael D. Gibbons. It should be noted that this report was not complete at
the time of Mike’s death. He had mentioned to several of his co-workers that
he had gathered all of the information necessary to complete the report, but
obviously had not had time to process and incorporate all of the data. Mike
was a meticulous note-taker, and so with very little effort, we were able to find
and extract the necessary information to complete and publish this valuable, well-
presented, research. This report stands as a testament to the accuracy, attention
to detail, and overall thoroughness Mike applied to all facets of his work.

In the fall of 1994, Mike’s Lockheed and NASA co-workers had resigned
themselves to the fact that their day-to-day relationship with him was about
to change drastically, since he had recently accepted a position with Boeing in
Seattle, Washington. Nobody truly felt Mike was leaving since he would always
be a phone call, or as he preferred, an e-mail message away. Everyone was
excited for him and preparing to offer their best-wishes and farewells when he
tragically died just two days before his scheduled departure.

Mike dedicated virtually his entire career to aeroelastic analysis and the
prediction of flutter. He was responsible for the development and verification
of many of the flutter prediction techniques using computational fluid dynamics
in practice today. His work in the application of Transonic Small Disturbance
(TSD) potential flow methods to problems in aeroelasticity is unsurpassed. Due
to this work, he had established himself as one of the premier computational
aeroelasticians in the industry. The research discussed in this report breaks ground
in several different areas. From a numerical standpoint, it is a comprehensive
study of the impact of varying equation accuracy on unsteady aerodynamic and
aeroelastic simulations. Data are presented and compared using methods ranging
from linear theory to TSD to full Euler/Navier-Stokes formulations. Second, and
more importantly, it provides valuable insight into the role of viscous effects in
flutter, especially in the vicinity of the “transonic dip.”

This effort was basically Mike’s first foray into the world of Euler/Navier-
Stokes aerodynamics and its application to aeroelastic problems. As evidenced by
this report, it is obvious that he possessed the talent, willingness and dedication
required to excel in this field, and the industry will miss him dearly.

To many of us, Mike was a loyal friend who cheered us with his kindness
and warm smile. He touched us deeply, and along with his family, we grieve
his untimely death. We will always have those happy memories of working and
playing with this special friend. His passing has left not only a technical void in
the Langley community, but an emotional one as well.






Aeroelastic Calculations Using CFD
for a Typical Business Jet Model

Michael D. Gibbons
Lockheed Martin Engineering and Sciences Company

Summary

Two time-accurate Computational Fluid Dynamics (CFD) codes were used
to compute several flutter points of a typical business jet wind tunnel model.
The model consisted of a rigid fuselage with a flexible semispan wing and was
tested in the Transonic Dynamics Tunnel at NASA Langley Research Center
where experimental flutter data were obtained from M,=0.628 to M,=0.888.
The computational results were computed using CFD codes based on the inviscid
TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE).
Comparisons are made between analytical results and with experiment where
appropriate. The results presented here show that the Navier-Stokes method is
required near the transonic dip due to the strong viscous effects while the TSD
and Euler methods used here provide good results at the lower Mach numbers.

Nomenclature
c local chord
Cr root chord (1.8942 ft)
ct tip chord (0.5433 ft)
C damping matrix
ce sectional lift coefficient
Cp pressure coefficient
f, Hz. frequency
f; mode shapes (i=1, 6)
K stiffness matrix
m mass of wing (0.56522 Slugs)
M mass matrix
Mo freestream Mach number
g generalized displacements (i=1, 6)
Qoo freestream dynamic pressure
Q generalized forces

semi-span of wing (4.0392 ft)
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t nondimensional time

Us flutter velocity

v volume of truncated cone that encloses wing (5.1945 ft3)
Vi flutter speed index E-‘%sg&;

X,y,Z nondimensional cartesian coordinates

v ratio of specific heats

7 mass ratio

Pt flutter density

é small disturbance potential

wg flutter frequency, rad./sec.

wi modal frequencies (i=1, 6), rad./sec.

Introduction

Several years ago a significant effort was devoted to the development of a
Computational Fluid Dynamics (CFD) method that solves the inviscid Transonic
Small Disturbance (TSD) equation for use in aeroelastic analysis. This work was
undertaken in order to provide an alternative to the widely used linear methods,
such as doublet lattice, and to improve upon previous TSD codes. The code
developed to solve the TSD equation is called CAP-TSD!" 2! and allows transonic
effects to be included in flutter calculations. Subsequent to the CAP-TSD effort,
a version of CFL3D!3 4l which solves the Euler/Navier-Stokes equations was
modified to allow dynamic aeroelastic calculations.l®} This version of the code is
known as CFL3D-AE, and it was used to compute all of the Euler/Navier-Stokes
calculations presented in this report. The advantage of using the Euler/Navier-
Stokes equations is the improved accuracy in modeling the flow physics. Both
CAP-TSD and CFL3D were developed at NASA Langley Research Center.

The purpose of this report is to further assess the above CFD methods for
transonic flutter applications. Previously CAP-TSD has been used to compute the
flutter boundary of various wings, including thin highly swept delta wings,[5 7]
the AGARD 445.6 wing,!®] and an Active Flexible Wing.l’] CFL3D has been used
to solve the Euler!!® and the Navier-Stokes!!!} equations for the AGARD 445.6
wing. This report presents results for a typical business jet configuration{!?! that
was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center.
The results include spatial and temporal convergence studies, surface pressure
coefficient comparisons for rigid and statically deformed cases, and a discussion
of the aeroelastic results using the TSD, Euler, and Navier-Stokes methods.



Numerical Method

This section gives a brief description of the methods used to numerically
solve the TSD, Euler/Navier-Stokes, and aeroelastic equations as contained in the
CAP-TSD and CFL3D computer codes, respectively.

The CAP-TSD code solves the unsteady transonic small disturbance equa-
tion using an implicit time-accurate approximate factorization algorithm with the
optional use of internal subiterations to minimize linearization and factorization
errors. The unsteady aerodynamics are simultaneously integrated in time along
with the structural equations of motion, which allows a time history of the struc-
tural response to some initial conditions to be studied. The structure is modeled as
a series of orthogonal mode shapes weighted by time varying coefficients known
as the generalized displacements. Since the modal deflections in the streamwise
and spanwise directions are small in comparison to the vertical modal displace-
ments, they are neglected and the position of the wing at any point in time can
be given by

modes

a(x,y,t) = Y aG(t)fi(x,y)

i

where q; is the time varying generalized displacements and f; represents the
vertical components of the mode shapes. This allows the structural equations
of motion to be written in generalized coordinates

[M){a} + [C){a} + [K{q} = {Q}

where [M], [C], and [K] are the generalized mass, damping and stiffness matrices
and {Q} is the generalized aerodynamic forces. The unsteady aerodynamics
can be computed using different forms of the TSD equation by choosing different
coefficients. Two different forms of the TSD equation were used here by choosing
either the linear equation coefficients or the so-called AMES coefficients. The
linear results were computed using the form

2 (Mg —20a0)
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The nonlinear results were computed using the TSD equation written using the
AMES coefficients given by

0
o (" MEbe — 2ME6.)

O (1 m2 ! 2,2, 1 2 2
b (- M2)o = S+ DMESL + 30— ML)

+ aiy(m — (= 1)M%4,))

a
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When the linear equation was used, the wing was modeled as a flat plate in order
to produce results similar to other linear methods such as doublet lattice. When the
nonlinear equation was used, the wing was modeled using the appropriate airfoil
shapes so that nonlinear effects (such as moving shock waves) could be modeled.
All CAP-TSD calculations included the effects of shock generated entropy and
vorticity.['3] The linear pressure coefficient equation was used to compute the
surface pressure values. Version 1.3 of CAP-TSD was used in all calculations.

The CFL3D code solves either the Euler or Navier-Stokes equations using an
implicit time-accurate approximate factorization algorithm involving either flux
vector splitting or flux difference splitting. For the calculations presented here,
flux-vector splitting was used. For the Navier-Stokes calculations, turbulence was
modeled using the Baldwin-Lomax model. Coupling of the structural equations of
motion with the aerodynamics was done similar to that implemented in CAP-TSD.
As with CAP-TSD, only the vertical component of the mode shape is used.

Aeroelastic Calculations for a Typical Business Jet

This section discusses the numerical results obtained for a business jet con-
figuration. Details of the geometry and the CFD models used in the calculations
are included. Every attempt was made to verify the spatial and temporal con-
vergence of the solutions. Results are presented which show the convergence of
selected cases. Sensitivity of the aeroelastic solutions to the initial conditions are
also presented. Surface pressure comparisons are made for the static rigid and
static aeroelastic cases. Finally, dynamic aeroelastic results are presented using
different equation levels, and comparisons are made with experimental data.

Model Geometry

The business jet configuration consisted of a semispan wing/fuselage con-
figuration which was tested in the Transonic Dynamics Tunnel (TDT) at NASA
Langley Research Center. Figure 1 shows an illustration of this model mounted on
the wall of the TDT. The model was tested in air for a range of freestream Mach



numbers to obtain flutter points. The model, however, was not instrumented to
measure surface pressure data. Experimental flutter data were obtained for Mach
numbers ranging from 0.628 to 0.888!'4]. The wing root angle-of-attack was var-
ied during the test to minimize loading with the maximum angle needed for this
purpose being 0.2 degrees. The wing has a taper ratio of 0.29 and a midchord
sweep of 23 degrees. The airfoil thickness varies from 13 percent at the symmetry
plane (for the extended wing configuration) to 8.5 percent at the wing tip. The
fuselage has a circular cross-section with a conical aft end.

The CAP-TSD calculations for the wing/fuselage configuration involved a
100x50x80 point computational grid with 45 points along the chord of the
wing and 25 points along the span. Figure 2 shows a perspective view of the
wing/fuselage surface grid. Figure 3 shows the four airfoil sections used to define
the wing surface. Linear interpolation is used to define the airfoil sections at
other spanwise locations. Calculations were also performed for a wing alone
configuration to study the effect of the fuselage on the results. Calculations for
the wing alone used the same grid as the wing/fuselage configuration but with the
wing extended to the symmetry plane.

Figure 4 shows the mode shapes for the wing, and Table 1 gives the general-
ized masses and frequencies used in the aeroelastic calculations. The mode shapes
and generalized masses were computed from a finite element structural model us-
ing NASTRAN. The frequencies are experimental values measured during testing
of the model in the TDT. As with most models of this type, a yaw mode is present
which includes very small vertical displacements. In all subsequent analyses, this
yaw mode is neglected and is not shown in the above figure.

The CFL3D calculations for the extended wing were made primarily with two
grids as shown in Figures 5 and 6. The Euler mesh contained 153 points around
the airfoil and wake, 57 points out the span with some clustering around the wing
tip, and 33 points normal to the wing surface. There were 113 points around each
airfoil section and 41 points on the wing spanwise. The Navier-Stokes mesh was
virtually identical except there were 51 points normal to the wing. Both meshes
used a C-H topology. No attempt was made to model the fuselage since inviscid
TSD results showed that it has little effect on the flutter solution as discussed
later. Viscous interactions between the wing and fuselage could impact flutter
results, but detailed analyses of these types of interactions are beyond the scope
of this effort.

Spatial and Temporal Convergence

Prior to making numerous aeroelastic calculations, a convergence study was
done with CAP-TSD and the CFL3D-Euler results. The effect of time step
on the CAP-TSD solutions is shown using the linear and nonlinear equations,
and the effect of grid density is shown for a case using the nonlinear equation.
Spatial and temporal convergence of the CFL3D-Euler results are shown. No

5



convergence study was done using the CFL3D-Navier-Stokes version due to the
large computational time required. By making these calculations, a grid density
and time step were chosen which produced solutions of acceptable accuracy and
yet require the minimum amount of computer time.

CAP-TSD

The temporal convergence study was performed at Mo,=0.6 with CAP-TSD
using the nonlinear equation and at Mo=0.9 using the linear and nonlinear
equation. Table 2 shows the effect of time step on the predicted flutter dynamic
pressure at Mo=0.9 using the linear TSD equation. The table shows the flutter
dynamic pressure and frequency computed using a time step based on 165, 330,
and 660 steps per cycle of motion in the third modal frequency (31.6 Hz).
Increasing the number of time steps from 165 to 330 results in roughly a 7
percent reduction in predicted flutter dynamic pressure whereas increasing from
330 to 660 only produces about a 1 percent reduction in flutter dynamic pressure.
Figure 7 shows the first generalized displacement computed at M,=0.6 using
the exact same input files except for the time step. The figure shows the large
error when the solution is not converged temporally. Using a time step of 0.1
results in an unstable structural response whereas a value of 0.0339 produces a
stable structural response. Reducing the time step further to 0.0166 resulted in no
significant change from the response at 0.0339. The nonlinear case at M,=0.9
is shown in Figure 8. The transients shown correspond to 330 and 660 steps
per cycle of motion. Figure 8 indicates that at Mo=0.9 a temporally converged
solution was obtained when using 330 steps/cycle. The time step used in the
remaining unsteady calculations was based on 330 steps per cycle of motion
since the increased accuracy at 660 was deemed minimal.

A spatial convergence study for a nonlinear case at Moo=0.9 and qc=21.6
psf is shown in Figure 9 using two different grid densities. The first grid size
was 100x50x80 and is used in all the other results computed in this paper; the
second grid size was 140x70x90. The second grid has 60 points along the chord
and 35 points along the span with clustering near the wing tip. Figure 9 shows
that the two solutions are nearly identical. This good comparison suggests that
the 100x50x80 grid produces solutions of acceptable spatial accuracy.

CFL3D-Euler

Three different grid densities were used to study spatial convergence of the
CFL3D-Euler solution at M,=0.9 and zero degrees angle of attack. The grids
used were constructed using a C-H topology. These grids contained 153x43x33,
153x57x33, and 263x57x33 grid points. The index refers to the number of points
around the airfoil chord, spanwise, and normal to the surface, respectively. Figure
10 shows the comparisons between the three solutions. Each grid gives nearly
the same solution with the spanwise index having the greatest influence on the
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location of the upper surface shock near the wing tip, and the chordwise index
affecting the resolution of a small lower surface shock near the tip. Based on
these calculations, the 153x57x33 grid was selected as producing a solution with
an acceptable level of spatial accuracy for the aeroelastic calculations presented
in this report.

The CFL3D-Euler calculations used a time step of 0.05 for all the unsteady
results presented. To determine how sensitive the solutions were to time step, a
calculation was done with a time step of 0.01 for an aeroelastic case at M=0.9
and q,=36.0 psf. Figure 11 shows a plot of the first generalized displacement
for the two different time steps. Since the two solutions are nearly identical, the
larger time step of 0.05 was used for further dynamic aeroelastic calculations.

Initial Conditions

Each dynamic aeroelastic calculation is computed by using the converged
static aeroelastic solution with some form of initial condition prescribed for the
generalized displacements or velocities of each structural mode. Typically, the
initial condition on the generalized displacements of each mode is taken to be
zero which should help to reduce numerical transients which otherwise might be
created by the wing instantaneously being displaced. To initiate the motion of
the wing, the generalized velocities of each mode have been set to 1.0 in all
the dynamic aeroelastic calculations presented unless noted otherwise. By setting
all of the generalized velocities to 1.0 (ie, g; = 1.0,i = 1, 6), each mode actively
participates in the structural response. This allows for accurate values of damping
and frequency to be extracted from each generalized displacement.

The choice of using an initial generalized velocity of 1.0 is somewhat arbitrary
and its effect on the structural response depends on how the mode shapes were
scaled. To show the effect that different values have on the solution, values
of 0.1, 1.0, and 10.0 were used as initial conditions at M =0.85, qu.=64.8
psf for the wing/fuselage configuration. These calculations were done using the
CAP-TSD code. Figure 12 shows the structural response of the first generalized
displacement. Each response was normalized by the initial condition amplitude
for direct comparison. Figure 12 indicates that the responses are quite similar,
and when damping and frequency information is extracted from each curve, the
frequency values are nearly identical, as shown in Table 3, while the damping
values range within five percent of each other. The amplitude of motion at the
wing tip leading edge caused by the different initial conditions varied from a
maximum of +/— 0.015 degrees to +/— 1.5 degrees for the initial conditions 0.1
and 10.0, respectively. These calculations indicate the aeroelastic response to
a set of initial conditions behaves in a linear fashion with the initial conditions
even though the mean flow field contains nonlinear features. Similar results were
obtained at a higher Mach number, M=0.9, for the wing alone case as shown
in Figure 13 and Table 4.



Methodology to Locate Flutter Crossing

To compute the point at which flutter occurs for a given Mach number, several
executions of a code are required. First, a static aeroelastic solution is computed
using a value of the dynamic pressure that is assumed to be near that which pro-
duces flutter (neutral stability). Next, a dynamic aeroelastic solution is computed
by restarting the calculation from the converged static aeroelastic solution with
some initial condition on the vertical velocity of the wing. The generalized dis-
placements from the dynamic case are fit with a series of exponentially damped
sine waves!!5) allowing the stability of the system to be determined. If the aeroe-
lastic solution was stable, a higher value for the dynamic pressure is chosen and
the static and dynamic aeroelastic solutions are again computed. Once two or
more transients have been computed, the flutter dynamic pressure value is deter-
mined by linear extrapolation using the damping information from the curve fitting
process. Linear extrapolation or interpolation gives an estimate of the conditions
that produce flutter. However, further refinement can be obtained by additional
aeroelastic calculations if improved accuracy is desired.

An alternative method to calculate the flutter crossing is to vary free stream ve-
locity while holding density constant (usually to the experimental flutter density).
This approach allows the mass ratio of the calculation to match the experimental
value. Since this method generally requires that the flutter solution be known be-
fore it is computed, the method of varying density is generally used. An additional
reason to vary density rather than velocity is that the flutter dynamic pressure is
generally more sensitive to changes in density than velocity thus making it easier
to determine the point of neutral stability.

Static Rigid Results

In this section, comparisons of the surface pressure coefficients computed
with CAP-TSD and CFL3D are shown for the extended wing at zero degrees
angle of attack. Due to the lack of experimentally measured surface pressures,
comparisons are made between different codes. The most direct comparison to
make with CAP-TSD is the CFL3D-Euler results since both methods assume the
flow to be inviscid. Comparisons between CFL3D-Euler and CFL3D-Navier-
Stokes generated surface pressure distributions are shown to indicate the effect
that viscosity has on the steady solution. These calculations were made for the
extended wing configuration only since the fuselage was not modeled in the
CFL3D calculations.

Comparisons between CAP-TSD and CFL3D-Euler surface pressure coeffi-
cients are shown for M,=0.7 and M,=0.9 at zero degrees angle of attack. Figures
14 and 15 show that CAP-TSD compares favorably with the CFL3D-Euler re-
sults. At M,=0.7, both methods are in excellent agreement for this subsonic case.
When the Mach number is increased to 0.9, a shock wave develops along the up-
per surface with a weaker shock wave on the lower surface. Comparisons between
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the two methods indicate a slight difference in the surface pressure magnitude at
some span stations. On the lower surface near midspan, CAP-TSD predicts the
shock is located further upstream than the Euler results. Part of this difference
may be due to the CAP-TSD grid which had a finer spacing in the spanwise direc-
tion near the wing root than the Euler grid did. Although not shown, additional
CAP-TSD calculations with a finer spacing at the wing trailing edge, resulted in
excellent comparisons of the surface pressure coefficients near the wing trailing
edge but the refinement had little effect on the overall surface pressures.

Comparisons are also shown between the sectional lift coefficients for the
above two cases in Figure 16. As expected, the comparison between CAP-TSD
and CFL3D is fairly good at M=0.7 but shows some significant differences at
Mo=0.9. These differences are due to the slight disagreement in the surface
pressures shown in Figure 15.

To show the effect that viscosity has on the position and strength of the shock
waves, a comparison was made between the CFL3D-Euler and CFL3D-Navier-
Stokes results at M,=0.9, zero degrees angle of attack, and Re = 1.107x10%. This
Reynolds number is typical of the value obtained during flutter tests this model
in the TDT. Figure 17 shows how the shock on the upper surface is significantly
weakened and shifted forward. The rapid recompression at the trailing edge is
also weakened due to the presence of the boundary layer. Aeroelastically, the
most important features are the forward shift in the shock resulting in a forward
shift in the aerodynamic center and the lower loads experienced on the wing due
to the weakening of the shock.

Static Aeroelastic Results

Prior to making a dynamic aeroelastic calculation, the wing was allowed to
deform due to the static air loads. To obtain a converged static aeroelastic solution,
six normal modes were used. A structural damping value of 0.99 (nearly critically
damped) was used for each mode while the solution was marched in time. Surface
pressure distributions are shown, and comparisons are made between CAP-TSD
and CFL3D-Euler results. The aerodynamic center and its relationship to the first
torsion node line, based on CAP-TSD calculations, are also plotted.

Figure 18 shows a three dimensional view of the upper and lower surface
pressure coefficients computed with CAP-TSD for the wing/fuselage configura-
tion. Results are shown at M,=0.8, 0.85, 0.9, and 0.95 for the converged static
aeroelastic deflections near the flutter dynamic pressure. These figures show the
development of strong shocks on the surface of the wing. At Meo=0.95, the upper
and lower surface shock has reached the trailing edge with the recompression oc-
curring slightly downstream of the wing trailing edge. The occurrence of a shock
near the wing root trailing edge is due to the aft shape of the fuselage which
results in a rapid expansion followed by a shock. As Figure 2 shows, the fuselage
becomes conical at approximately eight tenths root chord. Figure 18 shows that
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the shock completely disappears when the aft end of the fuselage was replaced
by a cylinder extending to the downstream boundary. In reality, the development
of such strong shocks may not occur due to the effect of viscosity which tends
to weaken shocks and move them forward.

Comparisons between the CAP-TSD and CFL3D-Euler static aeroelastic so-
lutions at My,=0.7 and M,=0.9 are shown in Figures 19 and 20. At M=0.7
and qoo=115.2 psf, comparisons between the CAP-TSD and CFL3D-Euler results
are quite good. At this Mach number a strong suction peak exists along the
lower surface leading edge. This is due to the negative effective angle of attack
produced by the twist of the deformed wing.

At Moo=0.9 and q»,=36.0 psf, comparisons between CAP-TSD and CFL3D-
Euler pressures (Figure 20) are good. However, CAP-TSD predicts the lower
surface shock wave to be located further forward near the wing tip than predicted
by CFL3D. Part of the difference in the solutions is due to the statically deformed
shape. The loading predicted with CAP-TSD results in the wing tip leading
edge being deflected 1.81 degrees nose down whereas CFL3D-Euler predicts a
deflection of 1.74 degrees. Since the loads on the wing were slightly different for
the rigid case, the resulting static aeroelastic shape must be different.

A comparison of the sectional lift at M,=0.7 and M,=0.9 is shown in Figure
21. At M,=0.7, the comparison between CAP-TSD and CFL3D sectional lift is
fairly good with some discrepancy near the wing tip. At the higher Mach number
of My=0.9, CAP-TSD tends to predict a higher loading at the wing tip and a
lower loading at wing root again due in part to the difference in the statically
deformed shape.

Figure 22 shows how the aerodynamic center, computed with CAP-TSD near
the flutter dynamic pressure, varies as the Mach number increases from Mo,=0.7
to Moo=0.9. At M,=0.7, the acrodynamic center is located well forward of the
first torsion node line near the quarter chord line as expected. This is one reason
why subsonically a higher dynamic pressure is required to produce flutter. As
the Mach number increases, the aerodynamic center moves aft and at M,=0.9
lies close to the first torsion node line. This reduces the aerodynamic damping
of the wing. With less damping the dynamic pressure which will produce flutter
is expected to decrease. Although not shown, calculations where the dynamic
pressure was varied at a constant Mach number indicated little change in the
location of the aerodynamic center.

Dynamic Aeroelastic Results

The flow conditions which produce flutter that are presented in this section
were computed using TSD, Euler and the Navier-Stokes equations. Calculations
for the wing/fuselage configuration and the extended wing configuration were
made with CAP-TSD. Since the presence of the fuselage appeared to have little
effect on the aeroelastic solutions, the Euler and Navier-Stokes calculations were
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made only for the extended wing. Calculations are presented to show the effect
of the fuselage, mass ratio, and equation level.

For each calculation the results were tabulated and plotted. To eliminate any
possible confusion on how certain quantities were calculated, the expressions used
are given here. The mass ratio was computed using

m

= Vo7

where

1
V= 1—2—7rs(c? + cier + cf)

and ‘m’ is the mass of the wing, ‘s’ is the semispan of the wing, ‘c;’ is the tip
chord, and ‘c,’ is the root chord at the wing fuselage intersection. The subscript on
density refers to the value at flutter. The reduced frequency was computed using

Crwi
k= =
2Us

where wy is the flutter oscillatory frequency, and Uy is the flutter free stream
speed. The flutter speed index was computed using
_2Ug
Cr""'.'i\/,‘7

where w3 is the third modal frequency corresponding to first torsion.

CAP-TSD results

Several flutter points were computed with CAP-TSD using the linear and
nonlinear equations. For both sets of results, the flutter points were computed by
holding velocity constant and varying density unless stated otherwise. No struc-
tural damping was used in these calculations. All calculations were performed
with the wing root set at zero degrees angle of attack. Each dynamic aeroelastic
calculation was restarted from a converged static aeroelastic solution. The ma-
jority of the unsteady calculations were computed using 330 steps per cycle of
the third modal frequency. Typical CPU execution times were 3.1 micro seconds
per grid point per time step on a CRAY 2. Flutter data for the business jet wing
are tabulated in Tables 5 through 13. Experimental data obtained in the NASA
Langley Research Center Transonic Dynamics Tunnel are presented in Table 5
for comparison with the following computed results.

Figure 23 (Table 6) shows that the CAP-TSD linear results for the
wing/fuselage configuration at low Mach number are in excellent agreement with
the experimental results. The good agreement between CAP-TSD linear results
and experiment at the lower Mach numbers should be expected since nonlin-
ear acrodynamic effects are insignificant whereas linear theory is thought to give
reasonable answers at higher Mach numbers due to the counteracting effects of
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thickness and viscosity. Thickness has a destabilizing effect at transonic speeds
for inviscid flows whereas viscosity tends to be stabilizing. A comparison between
the CAP-TSD results computed with the linear (Table 6) and nonlinear (Table 7)
equation in Figure 23 show that thickness has a significant effect above Mo=0.7.
The large differences between the results using the linear and nonlinear equations
are due to the presence of strong shocks in the flow field.

For the results computed with the nonlinear equation, calculations at M,=0.9
indicated a very low dynamic pressure may have been needed to obtain a flutter
crossing. At this Mach number all solutions computed by varying density down
to a dynamic pressure of 7.2 psf were unstable with low damping. Since such
an unrealistically low dynamic pressure may have been needed to obtain a flutter
crossing no point was plotted for this case.

The effect of the fuselage on the flutter results is shown by two calculations
in which the fuselage was removed and the wing extended to the symmetry plane.
Results of this analysis are tabulated in Table 8. As shown in Figure 24, the effect
of the fuselage is minimal. This is expected since the generalized aerodynamic
forces are weighted by the mode shapes, and near the root where the interference
effects of the fuselage are greatest, the modal displacements are nearly zero thus
resulting in a contribution to the generalized aerodynamic forces which is far
smaller than the contributions from the loading near the wing tip where the modal
displacements are greatest.

Figure 25 (Table 9) shows the effect of matching the mass ratio to the
experimental value. These calculations are done by holding density constant
at a linear extrapolation of the experimental density and varying both dynamic
pressure and velocity. At M=0.8, there is no significant difference between
the calculations which match velocity or density. However, at M,=0.9, a solid
flutter point was obtained with CAP-TSD while the velocity was being varied.
This is in contrast to the unstable solutions computed by varying density while
holding velocity constant. Based on the improved solutions computed by varying
velocity, one should not conclude that this provides more accurate answers than
varying density. Varying velocity effectively changes the phase lag, which has
been pointed out by Zwann!!6) as being a primary cause of the transonic dip. Thus,
if the theoretical flutter velocity is significantly different from the experimental
velocity, the flow physics may not be the same as those in the experimental data
making direct comparisons meaningless. This implies the velocity should be held
fixed at the experimental value; however, a somewhat different argument might
be made for varying density which affects wing loading.

Figure 26 provides further insight into the inviscid flutter by showing the
modal interactions for the previous CAP-TSD results computed with the nonlinear
equation for the wing/fuselage configuration in root locus form. These figures
show frequency versus damping for each mode with stable roots on the left and
unstable roots on the right of each of the figures. In Figures 26a, 26b, and 26c, the
mode which first becomes unstable is first bending. These results are very similar
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to those obtained by Mohr, Batina, and Yang'”! who show a study of the flutter
mechanism for a wing similar to the one studied here. In Reference [17] however,
the mass ratio was held constant, whereas in the present study, the mass ratio was
allowed to vary with increasing Mach number. Calculations with CAP-TSD at
lower mass ratios for the Mo,=0.9 case (Table 10) showed that as the mass ratio
decreases, the dynamic pressure which produces flutter increases, and the type of
mode shift shown in Reference [17] occurs; that is, the first torsion mode appears
to be the primary flutter mechanism. With the higher mass ratios encountered for
the CAP-TSD calculations varying density, there does not appear to be a shift
in the primary flutter mechanism, which remains first bending into supersonic
flow. Reference [17] attributes the mode shift to the upper surface shock passing
across the first torsion node line. Similar results shown here indicate that as
the shock moves aft, there is a reduction in aerodynamic damping due to the
aft movement of the aerodynamic center. As the Mach number increases from
Moo=0.7 t0 Mco=0.85, the largest stable value of damping gradually decreases
with the frequency decreasing for zero damping. The decrease in frequency is
also shown in Figure 23b. Further calculations have shown that the third mode
eventually goes unstable, but at much higher dynamic pressures. At M=0.9, both
the first bending mode and first torsion go unstable and appear to be unstable even
at dynamic pressures near zero (large mass ratios).

CFL3D results

The following section presents aeroelastic results which were computed using
the Euler and Navier-Stokes equations as solved by CFL3D. These results were
computed using the extended wing configuration with no structural damping and
with the wing root angle-of-attack at zero degrees. Both the Euler and Navier-
Stokes solutions were computed by holding velocity constant and varying density
unless stated otherwise. As with the TSD calculations, the dynamic aeroelastic
calculations were restarted from a converged static aeroelastic solution. The
Euler calculations were made with a 153x57x33 grid while the Navier-Stokes
calculations used a 153x57x51 grid. Typical execution times were approximately
46.0 micro seconds per grid point per time step for the Euler calculations and
50.0 micro seconds per grid point per time step for the Navier-Stokes calculations
on a CRAY 2.

Figure 27 shows a comparison between Euler (Table 11) and TSD (Table 8)
results. The comparison shows that both methods give nearly the same result
at Moo=0.7 and M,=0.85. At slightly higher Mach numbers of 0.92 and 0.94,
the Euler calculations predict unstable responses down to 7.2 psf similar to the
results at Mo=0.9 computed with CAP-TSD. Apparently, inviscid solutions for
this configuration do not contain sufficient aerodynamic damping and result in a
free response as the Mach number approaches values around 0.92. Both Euler
and TSD calculations performed near this Mach number exhibit very low flutter
dynamic pressures, which are not displayed on this plot. As the Mach number is
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increased to Mo,=1.053, a clear boundary between stable and unstable aeroelastic
transients allowed a flutter point to be computed. An examination of the frequency
at flutter indicates a mode shift has occurred which is apparently due to second
bending.

Figure 28 shows the effects of mass ratio on the computed flutter points.
Since varying velocity while holding density constant had a significant effect on
the CAP-TSD solution at M,,=0.9, this method was used to compute the flutter
crossing with CFL3D-Euler (Table 12). As with the CAP-TSD mass ratio results
shown in Figure 25, there is little difference in the method used to compute
the flutter point below Mo=0.85. At M=0.9 the method of varying velocity
predicts a slightly higher flutter speed index.

The effects of viscosity on the flutter solution are shown in Figure 29. These
calculations were computed by holding velocity constant and varying density using
the Navier-Stokes equations. Figure 29 compares the Navier-Stokes solutions with
the Euler results. Comparisons show that the addition of viscosity results in a small
increase in the flutter speed at M,=0.85 while at M,=0.9 there is a significant
increase in the predicted flutter speed index. As the Mach number is increased
further to Moo=0.92, the predicted boundary begins to turn upwards indicating
that the transonic dip occurs near Mo,=0.9. The significant difference between
the Euler solution at M,=0.9, which is effectively at an infinite Reynolds number,
and the Navier-Stokes solution indicates the importance that viscosity plays for
this configuration. Since the Reynolds number is approximately one million
for both the Navier-Stokes calculations and experimental data near M,=0.9,
it is interesting to note that the experimental data may be nonconservative in
comparison to flight tests since they usually occur at Reynolds numbers greater
than one million. The Navier-Stokes results presented in Figure 29 are tabulated
in Table 13.

Conclusions

Detailed aeroelastic calculations have been presented for a business jet config-
uration computed using the TSD equation, Euler equations, and the Navier-Stokes
equations. The TSD calculations were computed with CAP-TSD while the Euler
and Navier-Stokes were computed with CFL3D.

Comparisons with experiment show that CAP-TSD does a fairly good job
in predicting the flutter boundary for the business jet model at the lower Mach
numbers with the results becoming conservative for the higher Mach numbers.
The reason for the discrepancy appears to be due to the inviscid nature of the
calculations. Without viscosity, shocks are typically much stronger and further
aft resulting in greater loads at a given value of dynamic pressure. Calculation of
the flutter points by varying density or velocity showed no significant differences
although varying velocity at M=0.9 did allow for a flutter point to be obtained.
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Calculations with the Euler equations showed little difference from the CAP-
TSD solutions; both methods predicted a rapidly dropping flutter boundary as
Moo,=0.9 was approached. Apparently, the assumptions made with TSD, such as
small perturbations and irrotational flow, are adequate for these cases. Calcu-
lation of the flutter points by varying density or velocity showed no significant
differences.

The results computed with the Navier-Stokes equations showed a significant
improvement in the comparisons between the computed flutter points and experi-
ment. The remaining differences between experiment and computed values might
be further improved by using a turbulence model which models separation such as
the Johnson-King turbulence model. Some improvement might also be obtained
by using a finer mesh. Other factors affecting the accuracy of the computed
flutter points include the accuracy of the structural mode shapes. The structure
is generally modeled using a subset of orthogonal mode shapes and an accurate
correlation of the computed mode shapes with experimentally measured values
may be necessary; if, for instance, the torsion node line near the wing tip were
inaccurately predicted, it could result in a completely different pitching moment.
Additionally, the structural damping of the wing should be measured and included
since the transonic dip region tends to be a region of low aerodynamic damping.

The goal of this report was to further study the use of CFD for predicting
flutter. The results presented here indicate that good agreement with experimental
data can be obtained with the Navier-Stokes code near the transonic dip. At
the lower Mach numbers, the TSD and Euler results show good agreement with
experimental data. Comparisons between the various equations levels showed the
importance of modeling viscosity near the transonic dip and how it had little effect
on the results at the lower Mach numbers. Since different configurations may be
more or less sensitive to viscous effects, then obtaining good comparisons with
experimental data at a minimum cost (CPU time) requires selecting the appropriate
method for the flow conditions.
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Table 1 Wing mode shape

information.

Mode Shape Generalized Mass Frequencies (Hz.)
(lesect)
1 0.0040196 430
2 0.0019749 14.50
3 0.0049215 31.60
4 0.0012095 33.00 |
5 0.0018510 58.20 |
6 0.00060438 62.66 |

Table 2 Effects of number of time steps per cycle of motion on the dynamic pressure and
frequency at flutter computed with CAP-TSD using the linear equation at M=0.9.

steps/cycle 165 330 660 |
dynamic pressure (psf) 91.38 85.23 84.25 |
frequency (Hz) 9.37 8.82 8.74 |
Table 3 Effects of generalized velocity initial conditions on the damping
and frequency content of the first generalized displacement computed with
CAP-TSD using the nonlinear equation at Mo=0.85 and qo=64.8 psf.
g; =0.1 gi =1.0 g; = 10.0
damping -0.00477 -0.00466 -0.00454
frequency 7.972 7971 7.975

Table 4 Effects of generalized velocity initial conditions on the damping
and frequency content of the first generalized displacement computed with
CAP-TSD using the nonlinear equation at Mo=0.90 and qeo=21.6 psf.

g =10 g; = 10.0
damping -0.0117 -0.0118
L frequency ll 5.603 5.602
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Table 5 Experimental flutter data for the business jet wing obtained in
air in the NASA Langley Research Center Transonic Dynamics Tunnel.

Velocity | Dynamic I“D(ensity Freq. Il?t:c;uced Mass
No. | (ft/sec) | Pressure | (Slug/ft3) (Hz) Freq. Ratio
(psf)
0.628 708.1 148.3 . . 0.110 184.1
0.698 781.0 140.6 4.61 12.5 0.095 236.0 I
0.781 863.2 125.3 3.36 11.3 0.078 323.8
0.844 929.2 109.5 2.54 104 0.067 428.4
I 0.888 97&.2 106.8 2.26 93 0.057 481.5
Table 6 CAP-TSD flutter results computed using the linear equation for the wing/fuselage configuration.
Mach | Velocity | Dynamic| Density | Freq. | Reduced] Mass Flutter
No. | (ft/sec) | Pressure | (Slug/ft3) | (Hz) | Freq. | Ratio | Speed
(psf) 10—¢ Index
0.600 | 669.6 | 146.04 | 6.51435 | 1296 | 0.1152 | 167.03 | 0.2755
0.700 | 781.2 | 134.57 | 441015 | 12.08 | 0.0920 | 246.73 | 0.2645
0.800 | 880.0 | 117.23 3.02763 | 10.83 | 0.0732 | 359.40 | 0.2468
0.850 | 935.0 | 104.03 | 2.37990 | 9.98 | 0.0635 | 457.21 | 0.2325
' 0.900 | 990.0 85.23 1.73921 8.82 | 0.0530 | 625.63 | 0.2105
I 0.980 | 1078.0 | 31.80 0.54729 592 | 0.0327 | 1988.2 | 0.1286
I 1.050 1155;(2_ 91.33 1.3:5224_ 9.21 | 0.0475 | 794.7 | 0.2176

Table 7 CAP-TSD flutter results computed using the nonlinear equation for the wing/fuselage configuration.

Mach | Velocity| Dynamic | Density | Freq. | Reduced
No. | (fv/sec) | Pressure | (Slug/ft3)| (Hz) | Freq.
(psf) 10—4

0.600 | 669.6 1424 6.35198 | 12.74 | 0.1132 | 171.30 | 0.2720
0.700 | 781.2 124.1 406703 | 11.60 | 0.0884 | 267.54 | 0.2540
0.800 | 880.0 91.1 2.35279 945 | 0.0639 | 462.48 | 0.2176
0.850 | 935.0 59.7 1.36578 | 7.63 | 0.0486 | 796.70 | 0.1761
0.950 | 1045.0 | 284.42 | 5.20904 | 15.56 | 0.0886 | 208.89 | 0.3845
1.05 1_125.0 358.00 | 5.36722 | 16.24 | 0.0837 | 202.73 | 0.4313
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Table 8 CAP-TSD fiutter results computed using the nonlinear equation for the extended wing configuration.

Mach | Velocity| Dynamic| Density | Freq. | Reduced| Mass | Flutter
No. | (fusec) | Pressure | (Slug/ft®) | (Hz) | Freq. | Ratio | Speed
(psf) 104 Index
0.700 | 781.2 126.0 4.12930 | 11.62 | 0.0885 | 263.51 | 0.2559
0.800 | 880.0 98.1 2.53357 993 | 0.0671 | 429.5 | 0.2258
0.850 | 935.0 63.9 1.46187 7.85 | 0.0500 | 744.33 | 0.1822
Table 9 CAP-TSD flutter results computed using the nonlinear
equation by varying U for the wing/fuselage configuration.
Mach | Velocity| Dynamic | Density | Freq. | Reduced| Mass | Flutter
No. | (fvsec) | Pressure | (Slug/ft) | (Hz) Freq. Ratio Speed
(psf) 104 ) Index
0.800 | 771.3 93.0 3.12140 9.60 | 0.0741 | 348.60 | 0.2196
Looo0 | 5595 | 342 | 2.18364 | 621 | 0.0660 | 49830 | 0.1333 |
Table 10 CAP-TSD flutter results computed using the nonlinear
equation for different mass ratios with the wing/fuselage configuration.
Mach | Velocity| Dynamic| Density | Freq. | Reduced| Mass | Flutter
No. | (fusec) | Pressure | (Slug/ ft3) | (Hz) Freq. Ratio Speed
(psf) 10—4 Index
0.900 | 646.0 113.54 5.44056 | 2848 | 0.2623 | 200.00 | 0.2429
I 0.900 | 559.5 342 2.18364 6.21 0.0660 | 498.30 | 0.1333

Table 11 CFL3D-Euler flutter results computed for the extended wing configuration.

Flutter

Mach | Velocity| Dynamic|{ Density | Freq. | Reduced| Mass
No. | (fusec) | Pressure | (Slug/ft3) | (Hz) | Freq. Ratio | Speed
(psf) 1074 Index
0.700 | 781.2 118.1 3.87040 | 11.81 | 0.0900 | 281.14 | 0.2477
0.850 | 935.0 69.1 1.58083 862 | 0.0549 | 688.3 | 0.1895
0.900 | 990.0 32.83 0.66993 624 | 0.0375 | 1624.2 | 0.1306
I 1.050 | 1155.0 | 266.2 3.99020 | 20.77 | 0.1070 | 272.7 | 0.3719
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Table 12 CFL3D-Euler flutter results computed for
different mass ratios with the extended wing configuration.

Velocity| Dynamic | Density | Freq. | Reduced| Mass
(fsec) | Pressure | (Slug/ft®) | (Hz) | Freq. | Ratio
(psf) 107t |
760.0 72.2 2.50185 8.81 | 0.0690 | 4349 | 0.1937
0.900 | 667.0 48.6 2.18364 7.07 | 0.0632 | 498.30 | 0.1583 I
Table 13 CFL3D-Navier-Stokes flutter results computed with the extended wing configuration.

Mach | Velocity| Dynamic| Density Freq. | Reduced| Mass Flutter
No. | (fvsec) | Pressure | (Slug/ft®) | (Hz) | Freq. Ratio | Speed
| (psf) 104 Index
0.850 | 935.0 804 1.83866 8.80 | 0.0560 | 591.8 | 0.2044
0.900 | 990.0 79.8 1.62881 8.16 | 0.0491 | 668.0 | 0.2037
0.920 | 1012.0 111.7 2.18133 9.10 | 0.0535 | 498.8 | 0.2410
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Figure 1 Semispan business jet model mounted in the
NASA Langley Research Center Transonic Dynamics Tunnel.

Symmetry Plane x-z

Figure 2 Wing/fuselage surface grid used with CAP-TSD caiculations.
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Figure 3 Airfoil sections at symmetry plane, 8.67, 27.4 and 99.9 percent span.

Figure 4 Wing mode shapes of the 6 modes used for aeroelastic analysis.
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Figure 6 Symmetry plane and wing surface grid used for CFL3D Navier-Stokes calculations.
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Figure 8 Effects of time step on the
first generalized displacement computed
with CAP-TSD using the nonlinear
equation at Moo =0.9 and qec=57.6 psf.
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first generalized displacement computed
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Figure 9 Effects of grid density on the first generalized displacement computed
using CAP-TSD with the nonlinear equation at Mo =0.9 and g =21.6 psf.
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Figure 10 Effects of grid density on steady pressure coefficients computed
using CFL3D-Euler results at Mo,=0.9 and o = 0 for a rigid case.

0.02 1 — DT=005
-—-- DT =001
0.01
0.00
9
- 001
- 0.02 : : ,
0.0 0.1 0.2 0.3

Time (sec)

Figure 11 Effects of time step on the first generalized displacement
computed using CFL3D-Euler at M=0.9 and qo=36.0 psf.
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Figure 12 Effect of generalized velocity initial
conditions on the first generalized displacement
computed with CAP-TSD using the nonlinear
equation at M ,=0.85 and qo.=64.8 psf.
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Figure 13 Effect of generalized velocity initial
conditions on the first generalized displacement
computed with CAP-TSD using the nonlinear
equation at Mo, =0.90 and q=21.6 psf.
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Figure 14 Comparison of CAP-TSD and CFL3D-Euler steady pressure
coefficients for the extended rigid wing configuration at M ,=0.7 and a = 0.
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Figure 15 Comparison of CAP-TSD and CFL3D-Euler steady pressure
coefficients for the extended rigid wing configuration at Mo=0.9 and a = 0.
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Figure 16 Comparison of sectional lift coefficients computed using CAP-TSD and
CFL3D-Euler for the steady rigid case at (a) Mo=0.7, = 0 and (b) M=09, a = 0.
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Figure 17 Comparison of CFL3D-Euler and CFL3D-Navier-Stokes steady pressure coefficients
for the rigid extended wing configuration at M,=0.9, a = 0, Re = 1.107x10%.
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(b) M_=0.85 and q,=64.8 psf

Figure 18 Effects of freestream Mach number (and dynamic pressure) on steady
pressure coefficients computed using CAP-TSD for the wing/fuselage configuration
under static aeroelastic deformation with dynamic pressure near the flutter value.
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(a) for the original wing/fuselage configuration.
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(b) aft end of fusclage modeled as a cylinder.

Figure 18 Effects of fuselage modeling on steady pressure
coefficients computed using CAP-TSD at M=0.85 and q=64.8 psf.
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Figure 19 Comparison of CAP-TSD and CFL3D-Euler steady pressure coefficients for the
extended wing configuration with static aeroelastic deflection at Mo =0.7 and qeo=115.2 psf.
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Figure 20 Comparison of CAP-TSD and CFL3D-Euler steady pressure coefficients for the
extended wing configuration with static aeroelastic deformation at M o.=0.9 and q..=36.0 psf.
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Figure 21 Comparison of sectional lift coefficients computed using CAP-TSD and CFL3D-Euler
for static aeroelastic cases at (a) Meo=0.7, qoo=115.2 psf and (b) Mceo=0.9, qoo=36.0 psf.
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Figure 22 Aerodynamic center location in relation to the first torsion node line computed using CAP-TSD
for static aeroelastic cases at (a) Meo=0.7, Qeo=115.2 psf and (b) M =09, q=36.0 psf.
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Figure 23 CAP-TSD flutter points computed using the linear and nonlinear
equations compared with Experimental data for the wing/fuselage configuration.
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Figure 24 Effects of fuselage modeling on the predicted flutter boundary using the nonlinear CAP-TSD equation.
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Figure 25 Effects of mass ratio on the predicted flutter boundary using the nonlinear CAP-TSD equation for the wing/fuselage configura
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Figure 26 Effects of freestream Mach number on aeroelastic stability computed
using CAP-TSD with the nonlinear equation varying density as a parameter.
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Figure 27 Comparison of CFL3D-Euler and CAP-TSD computed flutter
solutions with experimental data for the extended wing configuration.
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